
ARTG 6900 Information Design Workshop 2/4/2016

Workshop: Writing
Reusable Modules

ARTG 6900 Information Design Workshop 2/4/2016

Goal of the Workshop

•	 Consolidate your understanding of writing modular d3
visualizations

•	 Practice building your own d3 module
•	 Putting modules together

ARTG 6900 Information Design Workshop 2/4/2016

Why Build Visualization Modules

Basic principles
•	 Repeatable
•	 Modifiable
•	 Configurable
•	 Extensible

ARTG 6900 Information Design Workshop 2/4/2016

Outline of Thought Process (1)

In order to re-use a block of code, we need to encapsulate it within
a function.

This allows us to call the function later on a d3 selection, like so:

//customChart is a function
selection
	 .datum(...)
	 .call(customChart);

Be sure the review the documentation for selection.
call(...)

ARTG 6900 Information Design Workshop 2/4/2016

Outline of Thought Process (2)

selection.call(function[, arguments…])

Invokes the specified function once, passing in the current
selection along with any optional arguments. The call operator
always returns the current selection, regardless of the return value
of the specified function. The call operator is identical to invoking
a function by hand; but it makes it easier to use method chaining.
For example, say we want to set a number of attributes the same
way in a number of different places.

function(_selection)

Layout/transform data
Append DOM elements
...

customChart

selection data

ARTG 6900 Information Design Workshop 2/4/2016

Outline of Thought Process (3)

selection
	 .datum(...)
	 .call(customChart);

But this implementation of
customChart isn’t configurable! i.e.
we can’t change its attributes!

function(_selection)

Layout/transform data
Append DOM elements
...

customChart

Wrapper

return customChart;

ARTG 6900 Information Design Workshop 2/4/2016

Outline of Thought Process (4)

The solution: wrap customChart in a
wrapper function.

Use the wrapper function to
configure, and export an instance of,
customChart

function(_selection)

Layout/transform data
Append DOM elements
...

customChart

Wrapper

return customChart;

Internal variables

Getter and setter

Setter functions let users
customize chart attributes
(like width and height)

1

...these attributes are stored
as internal variables

2

customChart uses
these internal variables

3

fully configured
customChart instance
is exported and ready to use

4

ARTG 6900 Information Design Workshop 2/4/2016

Outline of Thought Process (5)

var chart1 = wrapper();

chart1.width(400);
chart1.height(600);

function(_selection)

Layout/transform data
Append DOM elements
...

customChart

Wrapper

return customChart;

Internal variables

Getter and setter

Setter functions let users
customize chart attributes
(like width and height)

1

...these attributes are stored
as internal variables

2

customChart uses
these internal variables

3

fully configured
customChart instance
is exported and ready to use

4

ARTG 6900 Information Design Workshop 2/4/2016

Outline of Thought Process (6)

var chart1 = wrapper()
	 .width(400)
	 .height(600)
	 ...

var chart2 = wrapper()
	 .width(300)
	 .height(400)
	 ...

chart1 and chart2 are two
different instances of customChart,
with different configurations.

function(_selection)

Layout/transform data
Append DOM elements
...

customChart

Wrapper

return customChart;

Internal variables

Getter and setter

Setter functions let users
customize chart attributes
(like width and height)

1

...these attributes are stored
as internal variables

2

customChart uses
these internal variables

3

fully configured
customChart instance
is exported and ready to use

4

ARTG 6900 Information Design Workshop 2/4/2016

Additional Considerations: Chaining

var chart1 = wrapper()
	 .width(400)
	 .height(600)
	 ...

Compare this to something familiar:

var axisX = d3.svg.axis()
	 .scale(...)
	 .ticks(...)

If chart configuration changes,
or new data is bound, we should
be able to make updates by
simply calling the function
again.

Our implementation of the
module should support this
behavior.

ARTG 6900 Information Design Workshop 2/4/2016

Additional Considerations: Updates to the Chart

var chart1 = wrapper()
	 .width(400)
	 .height(600);
d3.select(‘div.chart’)
	 .datum(someData)
	 .call(chart1);

chart1.width(500);
d3.select(‘div.chart’)
	 .datum(newData)
	 .call(chart1);
	

ARTG 6900 Information Design Workshop 2/4/2016

Defining Our Own API

Crucially, our design of the module makes important assumptions:

•	 The form of the data
•	 The nature of the d3 selection (<div>? <svg>? <g>?)
•	 The allowed arguments for the getter/setter functions

Our API must make these assumptions explicit!

ARTG 6900 Information Design Workshop 2/4/2016

Application Programming Interface (API)

Defines a software component in terms of its

•	 Operations i.e. what does it do
•	 Inputs
•	 Outputs
•	 Underlying type

These are indepent of the component’s underlying implementation
(you don’t need to know it!)

Implementation

ARTG 6900 Information Design Workshop 2/4/2016

API

ARTG 6900 Information Design Workshop 2/4/2016

ARTG 6900 Information Design Workshop 2/4/2016

Time Series Module

