ARTG 6900 Information Design Workshop

Workshop: Writing
Reusable Modules

ARTG 6900 Information Design Workshop 2/4/2016

Goal of the Workshop

« Consolidate your understanding of writing modular d3
visualizations

 Practice building your own d3 module

 Putting modules together

ARTG 6900 Information Design Workshop 2/4/2016

Why Build Visualization Modules

Basic principles
* Repeatable
* Modifiable
« Configurable
« Extensible

ARTG 6900 Information Design Workshop 2/4/2016

Outline of Thought Process (1)
In order to re-use a block of code, we need to encapsulate it within
a function.
This allows us to call the function later on a d3 selection, like so:

//customChart is a function

selection
.datum(...)
.call(customChart);

Be sure the review the documentation for selection.
call(...)

ARTG 6900 Information Design Workshop 2/4/2016

Outline of Thought Process (2)

selection.call(function[, arguments..])

Invokes the specified function once, passing in the current
selection along with any optional arguments. The call operator
always returns the current selection, regardless of the return value
of the specified function. The call operator is identical to invoking
a function by hand, but it makes it easier to use method chaining.
For example, say we want to set a number of attributes the same
way in a number of different places.

ARTG 6900 Information Design Workshop

2/4/2016

Outline of Thought Process (3)

selection

data

customChart

function(_selection)

Layout/transform data
Append DOM elements

selection
.datum(...)
.call(customChart);

But this implementation of
customChart isn’t configurable! i.e.
we can’t change its attributes!

ARTG 6900 Information Design Workshop 2/4/2016

Outline of Thought Process (4)

Wrapper The solution: wrap customChart ina
"""""""""""""""""" wrapper function.

Use the wrapper function to
configure, and export an instance of,
customChart

customChart

function(_selection)

Layout/transform data
Append DOM elements

return customChart;

ARTG 6900 Information Design Workshop 2/4/2016

Outline of Thought Process (5)

Wrapper var chartl = wr‘apper‘();
—> 2 ...these attributes are stored —— chartl.width(49@);
chartl.height(600);

customChart

N2
3 cUst
Layout/transform data this

Append DOM elements

function(_selection) E
b

mChart uses
internal variables

customize chart attributes
(like width and height)

A4
return customChart; 4 fullyiconfigured

............................. sustomChart instance
is exported and ready to use

ARTG 6900 Information Design Workshop 2/4/2016

Outline of Thought Process (6)

Wrapper var chartl = wr‘apper‘()

E Internal variables E ’ Wldth (466)
— 15 2 ...these attributes are stored i— . hElght (6@@)

E as internal variables :
E customChart : T
E functi _selection E
| | ' var chart2 = wrapper()
' 3 cdstomChart uses :
« | Layout/transform data thpse internal variables .width (3@@)
* | Append DOM elements : . hElght (4@@)
i Getter and setter i
L+ 1 Setter functions let users E chartl and chart2 are two
: tomi hart attribut 3 . .
5 (ko width and height) 5 different instances of customChart,
: : with different configurations.

return customChart; 4 fullyiconfigured
............................. sustomChart instance
is exported and ready to use

ARTG 6900 Information Design Workshop 2/4/2016

Additional Considerations: Chaining

Wrapper var chartl = wr‘apper‘()
""""""""""""""""" .width(400)
—+—> 2 ...these attributes are stored —— . hElght (6@@)

customChart

¢ Compare this to something familiar:

3 cUst
Layout/transform data this

Append DOM elements

function(_selection) E
)

mChart uses
internal variables

var axisX = d3.svg.axis()
.scale(...)

¢
Getter and setter E ‘thkS(o0)

customize chart attributes
(like width and height)

A4
return customChart; 4 fullyiconfigured

............................. sustomChart instance
is exported and ready to use

ARTG 6900 Information Design Workshop 2/4/2016

Additional Considerations: Updates to the Chart

var chartl = wrapper() If chart configuration changes,
.width(400) or new data is bound, we should
.height(600); be able to make updates by
d3.select(‘div.chart’) simply calling the function
.datum(someData) again.
.call(chartl);

Our implementation of the
chartl.width(500); module should support this
d3.select(‘div.chart’) behavior.

.datum(newData)

.call(chartl);

ARTG 6900 Information Design Workshop 2/4/2016

Defining Our Own API

Crucially, our design of the module makes important assumptions:

* The form of the data
* The nature of the d3 selection (<div>? <svg>? <g>?)
« The allowed arguments for the getter/setter functions

Our API must make these assumptions explicit!

ARTG 6900 Information Design Workshop 2/4/2016

Application Programming Interface (API)

Defines a software component in terms of its

Operations 1.e. what does it do
Inputs

Outputs

Underlying type

These are indepent of the component’s underlying implementation
(you don’t need to know it!)

ARTG 6900 Information Design Workshop 2/4/2016

Implementation

ARTG 6900 Information Design Workshop 2/4/2016

AP
O— —0
O— —0
O— —0
O— —0

ARTG 6900 Information Design Workshop 2/4/2016

Time Series Module

